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Hydrodynamically coupled rigid bodies
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This paper considers a finite number of rigid bodies moving in potential flow.
The dynamics of the solid–fluid system is described in terms of the solid variables
only using Kirchhoff potentials. The equations of motion are first derived for the
problem of two submerged bodies where one is forced into periodic oscillations.
The hydrodynamic coupling causes the free body to drift away from or towards the
oscillating body. The method of multiple scales is used to separate the slow drift from
the fast response. Interestingly, the free body, when attracted towards the forced one,
starts to drift away after it reaches certain separation distance. This suggests that
the hydrodynamic coupling helps in preventing collisions. The fluid’s role in collision
avoidance and motion coordination is examined further through examples. In partic-
ular, we show that a free body can coordinate its motion with that of its neighbours,
which may be relevant to understanding the coordinated motion in fish schooling.

1. Introduction
This paper considers the motion of systems of solid bodies in potential flow. The

primary motivation is to study the effect of the hydrodynamic coupling on the motion
of the submerged solids and gain insight into the importance of this coupling in fish
schooling.

Early efforts in developing mathematically sound models of swimming can
be attributed to Gray, Childress, Lighthill, Taylor and Wu; see, e.g., Childress
(1981), Lighthill (1975), Taylor (1952) and Wu (1971). Interest has re-emerged over
the past few years in understanding the mechanics of fish swimming and thereby
enable novel engineering applications such as the design of biologically inspired
vehicles that move and steer by shape changes rather than by direct propulsion. For
recent experimental studies of the shape kinematics of live fish and its interaction
with the surrounding fluid, see, for example, Liao et al. (2003), Müller (2003), and
Webb (1991). See also Kelly (1998) and Radford (2003) for their fundamental work
on the mathematical formulation of aquatic locomotion using tools from geometric
mechanics. In Kanso & Marsden (2005) and Kanso et al. (2005), we modelled the
fish as an articulated body and formulated the equations governing its motion in
potential flow. We showed under these idealized conditions, i.e. in the absence of a
vortex shedding mechanism, that the articulated body can propel and steer itself by
changing its shape only. The net locomotion in potential flow occurs due to the transfer
of momentum between the solid and the fluid: starting from rest, the articulated body
changes its shape by applying internal torques at its joints. The shape actuation sets
the surrounding fluid into motion, and the coupling between the shape dynamics and
the surrounding fluid causes a net locomotion of the solid. This result is important
because it demonstrates that one could capture some features of aquatic locomotion
using simple potential flow models with no shed vortices. Indeed, our models are close
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in spirit to Lighthill’s ‘reactive’ force theory for the swimming of elongated fish (e.g.
Carangiform fish) at large Reynolds number, see Lighthill (1975). He argues that the
added or virtual mass of fluid which acquires momentum through shape changes of
the animal far exceeds the associated animal’s mass and the ‘resistive’ forces due to
boundary layer and vortex shedding; hence, the ‘reactive’ forces (proportional to the
added mass) play a central role in the locomotion of these animals. It is exactly this
(added mass) effect that we capture in the potential flow models.

In this paper, we study the hydrodynamic-coupling effects on the motion of multiple
bodies in potential flow. These idealized models, although lacking in biological realism,
may provide valuable insight into the fluid’s role in the coordinated motion of fish
schools. Natural fish schools seem to consist of two opposing but balanced behaviours:
a desire to avoid collisions within the group and a desire to stay close to the group,
see, e.g., Hoare et al. (2001) and Shaw (1975). It is clear why an individual fish wants
to avoid collisions. But why do fish seem to have this basic urge for joining a group?
Biologists explain this as an evolutionary behaviour resulting from several factors
such as protection from predators, profiting from a larger search pattern in the quest
for food, and advantages for social and mating activities, Shaw (1970). From the
energy point of view, it is widely believed that fish exploit the vortices in the wake
of other fish of the group to reduce their locomotory costs, which is consistent with
the recent findings in Liao et al. (2003). We emphasize that the goal of this work is
not to present biologically accurate models of fish schooling but rather to develop
simple models with idealized fluid motion that provide insight into the role of the
hydrodynamic coupling in the motion of multiple submerged bodies. In § 5 of this
work, we study the fluid’s role in collision avoidance and motion coordination of
multiple bodies and provide evidence that a free body coordinates its motion with
that of its neighbours even in the absence of shed vortices. We tie our work to the
classical work of Lamb (1932) by first considering the example of two submerged
cylinders where one is forced into periodic oscillations and analysing the response
of the free cylinder to this parametric excitation. Note that the interactions of two
bodies in potential flow was also considered in the recent works of Burton, Gratus &
Tucker (2004), Wang (2004) and Crowdy, Surana & Yick (2007).

The organization of this paper is as follows. In § 2, the Lagrangian function of the
solid–fluid system is expressed in terms of the solid variables only. The equations of
motion are derived for the problem of two submerged cylinders in § 3. One cylinder
is forced into periodic oscillations and the response of the second cylinder to this
parametric excitation is analysed. A separation of time scales in the response of the
free cylinder is performed in § 4. In § 5, the role of the fluid in collision avoidance and
motion coordination is examined numerically through examples. We summarize the
findings of this work in § 6.

2. Formulation of the dynamics
Consider N planar rigid solids immersed in an infinitely large volume of an inviscid

incompressible fluid which is at rest at infinity. Assume that the fluid particles may
slip along the boundaries of the solid but cavities are not allowed to form in the fluid
nor at the interface. That is, the normal components of the solid and fluid velocities
are equal at the interface. Further, assume that the motion of the solid remains
planar at all time and does not generate vorticity in the fluid, that is, starting with
zero circulation (irrotational flow), the flow remains irrotational at all times. In this
case, the dynamics of the solid–fluid system can be described in terms of the solid
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Figure 1. Solid bodies of arbitrary shape are placed in an infinite two-dimensional domain
of incompressible irrotational fluid. The plane is horizontal (no gravity) and the solids are
assumed to be neutrally buoyant.

variables only without explicitly incorporating the ambient fluid, as outlined in this
section.

It is convenient for studying the motion of the submerged solids to introduce an
orthonormal inertial frame {e1,2,3} where {e1, e2} span the plane of motion and e3 is
the unit normal to this plane. The configuration of each solid Bi , i = 1, . . . , N , can
then be described by a rotation βi about e3 and a translation (xi, yi) in the {e1, e2}
directions, as shown in figure 1. Further, let Ωi = β̇i and vi = (ẋi , ẏi) be, respectively,
the angular and translational velocities of Bi expressed relative to a frame attached
to Bi . For conciseness, the velocity of Bi will be denoted by the column vector ξi

where ξi = (Ωi, vi)
T .

The kinetic energy T of the solid–fluid system can be written as the sum of the
energies of the solids TBi

and the energy of the fluid TF; namely,

T =

N∑
i=1

TBi
+ TF. (2.1)

The kinetic energy TBi
can be written in the form

TBi
= 1

2
ξT
i �s

i ξi, i = 1, 2 . . . , N. (2.2)

Here, �s
i is a 3 × 3 diagonal matrix with diagonal entries (Ii, mi, mi) where Ii is the

moment of inertia of Bi and mi its mass. It is important to recall that the solid bodies
are neutrally buoyant, that is, ρs = ρf .

The kinetic energy of the fluid TF is given by

TF =
1

2

∫
F

ρf |u|2 da, (2.3)

where u is the spatial velocity field of the fluid and da is the standard area element on
�2. For potential flow, the fluid velocity can be written as the gradient of a potential
function u = ∇φ, where the potential φ is the solution to Laplace’s equation

�φ = 0 (2.4)

subject to the boundary conditions

∇φ · ni = (vi + Ωi × Xi) · ni on ∂Bi ,

∇φ = 0 at ∞.

}
(2.5)
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Here, ni is the outward unit normal to the boundary ∂Bi and Xi is the position vector
of a point on ∂Bi relative to the respective mass centre. By linearity of Laplace’s
equation (using the principle of superposition), one can write, following Kirchhoff,

φ =

N∑
i=1

(Ωi · χi + vi · ϕi), (2.6)

where χi and ϕi = (ϕx
i , ϕ

y
i ) are called velocity potentials and are solutions to Laplace’s

equation subject to Neumann-type boundary conditions at their interface with the
solid bodies; namely

∇χi · ni = (e3 × Xi) · ni on ∂Bi , ∇χi · nj = 0 on ∂Bj , j �= i, (2.7)

and (similar conditions hold for ϕ
y
i )

∇ϕx
i · ni = e1 · ni on ∂Bi , ∇ϕx

i · nj = 0 on ∂Bj , j �= i. (2.8)

It should be clear from (2.7)–(2.8) that χi , ϕx
i and ϕ

y
i depend not only on the shape of

Bi but also on that of the other submerged bodies and their relative positions with
respect to Bi .

Using u = ∇φ where φ is written as in (2.6) and following a standard procedure
(see, e.g., Kanso et al. 2005) to show that TF of (2.3) can be rewritten as

TF =

N∑
i=1

N∑
j=1

1

2
ξT
i �f

ij ξj . (2.9)

The 3 × 3 added-inertia matrices �f
ij depend on the geometry and relative

configurations of the submerged solids and are of the form

�f
ij =

⎛
⎝ Jij dT

ij

dij Mij

⎞
⎠ , (2.10)

where Jij are scalars that represent added moments of inertia due to the presence of
the fluid,

Jij = −ρf

∫
∂Bj

χi

∂χj

∂n
ds, (2.11)

Mij are 2 × 2 symmetric matrices that represent added masses,

Mij =

⎛
⎜⎜⎜⎝

−ρf

∫
∂Bj

ϕx
i

∂ϕx
j

∂n
ds −ρf

∫
∂Bj

ϕx
i

∂ϕ
y
j

∂n
ds

−ρf

∫
∂Bj

ϕ
y
i

∂ϕx
j

∂n
ds −ρf

∫
∂Bj

ϕ
y
i

∂ϕ
y
j

∂n
ds

⎞
⎟⎟⎟⎠ , (2.12)

and dij are 2 × 1 arrays that reflect a coupling between the angular and translational
motions due to the hydrodynamic effects,

dij =

⎛
⎜⎜⎜⎜⎝

−1

2
ρf

(∫
∂Bj

ϕx
i

∂χj

∂n
ds +

∫
∂Bj

χi

∂ϕx
j

∂n
ds

)

−1

2
ρf

(∫
∂Bj

ϕ
y
i

∂χj

∂n
ds +

∫
∂Bj

χi

∂ϕ
y
j

∂n
ds

)
⎞
⎟⎟⎟⎟⎠ . (2.13)
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Note that ds is a line (e.g. arclength) element. It should be clear from the above
expressions that each added-inertia matrix �f

ij is symmetric and, hence, has three

independent principal axes. Further, �f
ij = �f

ji . This symmetry reflects a reciprocity
in the effects two submerged solids Bi and Bj have on each other due to the
hydrodynamic coupling.

The total kinetic energy T in (2.1) can be rewritten by virtue of (2.2) and (2.9) as

T =

N∑
i=1

N∑
j=1

1

2
ξT
i �ij ξj , (2.14)

where �ii = �s
i + �f

ii and �ij = �f
ij for i �= j . Note that, although there is an analogy

between �s
i and �f

ij , they are fundamentally distinct. For example, in translation, unlike
the body’s actual mass, the added mass depends on the direction of the motion.

For the neutrally buoyant rigid bodies, the Lagrangian function L of the solid–
fluid system is equal to the kinetic energy T given in (2.14). Clearly, L is a function
of the solid variables only (both position and velocity). The same holds for the
equations of motion which can be derived from Hamilton’s variational principle (or
the Lagrange–d’Alembert variational principle in the presence of applied external
forces and moments), which requires that

δ

∫ tf

t0

L dt = 0 (2.15)

for all variations that vanish at the end points t0 and tf . In the following sections,
we derive the equations of motion for a number of systems and discuss their
behaviour and relevance to understanding the role of hydrodynamic coupling in
motion coordination.

3. Two submerged cylinders and Lamb’s example
We consider the problem of two cylinders in potential flow where one is forced to

oscillate along the line joining the two centres while the second responds freely
due to hydrodynamic coupling. This problem is inspired by a similar example
of two submerged spheres considered in Lamb (1932). Lamb concluded, using
approximate potentials and an averaging analysis, that the free sphere is “on average”
attracted towards the oscillating body. In this section, we study, both analytically and
numerically, the two-dimentional analogue (we consider two cylinders instead of
two spheres) and show that the free cylinder can be either repelled away or attracted
towards the oscillating body depending on the phase of oscillation. We also indicate
that this conclusion is true for the example of the two spheres considered by Lamb,
while his analysis only captures the attracting behaviour.

The two submerged cylinders (of radii a and b respectively) are constrained to move
along the line joining their centres, which is chosen to coincide with the e1-direction,
and the centre of B1 is placed initially at the origin, as shown in figure 2. Following
the notation in § 2, the coordinates of the centres of the cylinders are labelled as (x1, 0)
and (x2, 0), respectively. The Lagrangian governing this (one-dimensional) motion of
the system is given by

L = 1
2

(
M11ẋ

2
1 + 2M12ẋ1ẋ2 + M22ẋ

2
2

)
, (3.1)
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Figure 2. Lamb’s example: two spherical bodies in potential flow where B1 is forced to
oscillate along the line joining the two centres and B2 responds freely. In this section, we
consider the analogous case of two submerged cylinders.

where M11, M12 and M22 are given by (2.12); namely

M11 = −ρf

∫ 2π

0

ϕ1

∂ϕ1

∂n
a dθ1, M12 = −ρf

∫ 2π

0

ϕ1

∂ϕ2

∂n
b dθ2,

M22 = −ρf

∫ 2π

0

ϕ2

∂ϕ2

∂n
b dθ2, (3.2)

where ϕ1 and ϕ2 are solutions to Laplace’s equations subject to the Neumann boundary
conditions in (2.8). The potential function of the surrounding fluid is φ = ϕ1ẋ1 + ϕ2ẋ2.
Note that, for notational convenience, we dropped the superscript x from ϕx

1 and ϕx
2

in (2.8) since the motion is constrained to be in the x-direction only.
Now, let B1 oscillate about the origin, that is, assume that x1 = f (t) is a prescribed

periodic function of time. The response of B2 to this parametric excitation is governed
by the Euler–Lagrange equation

d

dt
(M12 ḟ + M22 ẋ2) − 1

2

(
∂M11

∂x2

ḟ 2 + 2
∂M12

∂x2

ḟ ẋ2 +
∂M22

∂x2

ẋ2
2

)
= 0. (3.3)

This is a scalar second-order differential equation whose solution x2(t) gives the
dynamic response of B2 to the prescribed parametric excitation f (t). The added
masses M11, M12 and M22 are typically functions of the distance between the two
cylinders (i.e. depend on x2 in a non-trivial way) and need to be computed in order
to study the dynamic response of B2. We present two methods: a numerical solution
based on a panel method and an analytical approximation following the approach
in Lamb (1932), assuming the distance between the cylinders is large compared to
their radii.

3.1. Computing the added masses using a panel method

We compute the added masses in (3.2) by solving for the velocity potentials
ϕi (i = 1, 2) using a standard panel method. As discussed in § 2, ϕi are the solutions
of Laplace’s equation �ϕi = 0, subject to Neumann-type boundary conditions (2.8)
at the interface with the solid bodies, which in this example gives

∇ϕi · ni = cos θi on ∂Bi , ∇ϕi · nj = 0 on ∂Bj , j �= i. (3.4)

The problem of solving Laplace’s equation for ϕ1 and ϕ2 over the fluid domain F
subject to (3.4) can be replaced by an easier boundary value problem which is then
solved numerically using a boundary element method. The theoretical foundation of
such methods is based on reformulating Laplace’s equations as a boundary integral
equation, using the divergence theorem (see, e.g., Moran 1984). As a result, only the
boundary surfaces of the submerged bodies need to be discretized, hence the
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computational advantages of such methods. We use the method devised by Hess &
Smith (1966) which utilizes a piecewise-constant distribution of source singularities
over the surfaces of the submerged bodies and computes this distribution as the
solution of an integral equation (see Kanso et al. 2005 for more details). Physically,
this fictitious source distribution induces a velocity field in the fluid that is equivalent
to the velocity field resulting from the motion of the submerged bodies.

In this example, we solve for two distinct source distributions corresponding the
two sets of boundary conditions in (3.4). The velocity potential functions ϕ1 and ϕ2

are now obtained at the discretized boundaries ∂B1 and ∂B2, and the added masses
in (3.2) are then computed. Finally, note that in the case of N submerged bodies
undergoing general translations and rotations, one needs to solve for 3 × N source
distributions corresponding to boundary conditions (2.7)–(2.8) on χi , ϕx

i and ϕ
y
i , as

done for the examples examined in § 5.

3.2. Analytic approximation of the added masses

We derive approximate expressions for Mij in (3.2) based on approximate velocity
potentials ϕ1 and ϕ2, assuming the distance between the bodies is large compared to
their radii.

We first compute an approximate expression for ϕ1. The velocity potential due to
a unit velocity of B1 in the e1-direction in the absence of B2 would be

ϕ =
a2

r1

cos θ1, (3.5)

where (r1, θ1) denote the polar coordinates relative to the centre of B1. We use this
potential function as a first approximation to ϕ1, which corresponds to a unit velocity
of B1 in the e1-direction while B2 is at rest. But (3.5) does not take into consideration
the presence of B2 and gives rise to a non-zero normal velocity on ∂B2 which can be
cancelled by setting ϕ1 = ϕ + ϕ̃, where ϕ̃ is to be determined. To this end, evaluate ϕ

in the neighbourhood of B2 in terms of (r2, θ2), the polar coordinates relative to the
centre of B2, to obtain

ϕ =
a2

r2
1

r1 cos θ1 =
a2

r2
1

(r12 − r2 cos θ2) ≈ a2

r2
12

(r12 − r2 cos θ2), (3.6)

where r12 = r1 cos θ1 + r2 cos θ2 is the distance between the centres of B1 and B2 and
is assumed to be large relative to a and b, see figure 2. One can readily check that
the non-zero normal velocity induced by ϕ on ∂B2 can be cancelled using a term of
the form

ϕ̃ = −a2b2

r2
12

cos θ2

r2

. (3.7)

Now, the resulting expression for ϕ1 = ϕ + ϕ̃ when evaluated on the surface of B1

adds an extra term to the normal velocity at ∂B1, i.e. it is no longer only due to a
unit velocity of B1 in the e1-direction. To fix this, we repeat the same procedure. We
first evaluate ϕ̃ in the neighbourhood of B1 in terms of r1 and θ1 to obtain

ϕ̃ = −a2b2

r4
12

(r12 − r1 cos θ1), (3.8)

where, as before, we used r1 cos θ1 + r2 cos θ2 = r12 and r12 � a, b. Then, to cancel
the additional component induced by ϕ̃ on the normal velocity at ∂B1, we need an
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additional term of the form

˜̃ϕ =
a4b2

r4
12

cos θ1

r1

. (3.9)

This process can be continued further to obtain more accurate expressions for the
velocity potential. We stop the approximation at this stage and use ϕ1 = ϕ + ϕ̃ + ˜̃ϕ,
which can be evaluated at ∂B1 and ∂B2 as follows:

ϕ1|∂B1
= a cos θ1 +

2a3b2 cos θ1

r4
12

− a2b2

r3
12

, ϕ1|∂B2
=

a2

r12

− 2a2b cos θ2

r2
12

. (3.10)

Similarly, an approximate expression for ϕ2 is given by

ϕ2|∂B2
= b cos θ1 +

2b3a2 cos θ1

r4
12

− b2a2

r3
12

, ϕ2|∂B1
=

b2

r12

− 2b2a cos θ2

r2
12

. (3.11)

The approximate values of ϕ1 and ϕ2 in (3.10)–(3.11) are used to calculate the added
mass in (3.2):

M11 = ρπa2

(
1 +

2a2b2

r4
12

)
, M12 = −2ρπ

a2b2

r2
12

, M22 = ρπb2

(
1 +

2a2b2

r4
12

)
. (3.12)

These expressions can be further simplified if we retain only terms up to order 1/r2
12,

which leads to

M11 = ρπa2, M12 = −2ρπ
a2b2

r2
12

, M22 = ρπb2. (3.13)

3.3. Dynamic response of the free body

This section studies the dynamic response of B2 to prescribed oscillations f (t) of B1

and compares the behaviour of B2 based on the the added masses computed in § 3.1
to that based on the approximate added masses derived in § 3.2. For the remaining
part of this paper, we assume SI units for all physical quantities.

We assume that the cylinders have zero inertias in vacuum and the same radius
a with 2a2 = 1m2, and set the fluid density to be ρf =1/π kg m−3. We calculate the
added masses Mij , (i, j = 1, 2), as described in § 3.1. The values of the added masses
are then substituted into (3.3) and a standard, variable-time-step, fourth- to fifth-order
Runge–Kutta integration scheme is used to solve for x2(t). Note that the derivatives
∂Mij/∂x2 are computed numerically using the following rule:

∂Mij

∂x2

≈ 1

12h
(Mij (x2 − 2δ) − 8Mij (x2 − δ) + 8Mij (x2 + δ) − Mij (x2 + 2δ)) (3.14)

where δ is an arbitrary small variation in x2 (chosen to be δ = 0.01/3 m in the numerical
scheme). In figure 3, B2 is shown to drift away from B1 when the latter is forced to
oscillate at f (t) = sin(t) whereas B2 is attracted towards B1 for f (t) = − sin(t).

In the case of approximate added masses, we have from (3.13) that M11 and M22 are
constants while M12 is function of the distance r12 = x2 − f . Employing this in (3.3)
yields the following analytical equation:

M22 ẍ2 + M12 f̈ − ∂M12

∂x2

ḟ 2 = 0. (3.15)
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Figure 3. The response of B2 to forced oscillations of B1. Initially, B1 and B2 are placed
at x1(0) = 0 m and x2(0) = 100 m respectively. (a) x2(t) versus t due to B1 oscillations of
the form x1(t) = f (t) = − sin(t). The free body B2 drifts away from the oscillating body.
(b) x1(t) = f (t) = sin(t), and B2 is attracted towards B1. In both plots, two solutions are
shown, which are in excellent agreement. One solution is obtained by computing the added
mass using a panel method, and the other is based on approximate expressions for the added
mass.

Then, substitute the values of M11, M12 and M22 from (3.13) into the above equation
to obtain

ẍ2 =
2a2

(x2 − f )2
f̈ +

4a2

(x2 − f )3
ḟ 2. (3.16)

Note that this equation is valid for (x2 − f ) � a. Hence, a positive scaling parameter
ε is introduced to reflect the magnitude of the radius a relative to the large distance
x2 − f between the two cylinders. The amplitude of the prescribed oscillation of B1

is chosen to be of order ε. To this end, use εf instead of f in (3.16) and again use
2a2 = 1 m2 to obtain

ẍ2 =
εf̈

(x2 − εf )2
+

2ε2ḟ
2

(x2 − εf )3
. (3.17)

We solve (3.17) for x2(t) using the same integration scheme. Figure 3 shows that the
response of B2 is consistent with that based on computing the added masses for
the two types of excitation f (t) = ± sin(t). Body B2 is attracted towards B1 when
f (t) = sin(t) and B2 is repelled away from B1 when f (t) = − sin(t). However, B2

drifts away from B1 for f (t) = ± sinn(t) for > 1, irrespective of the sign, see figure 4,
depictis which the response when n= 2, 3. Notice that, in figures 3 and 4, the response
of B2 consists of a slow drift (towards or away from B1) and superimposed rapid
oscillations.

Note that the direction of motion depends on the phase of the forcing in the
case when f (t) = ± sin(t) whereas the motion direction remains unchanged when
f (t) = ± sinn(t) with n> 1. This behaviour can be interpreted physically as follows:
in order to determine the direction of motion of the free cylinder, it is not enough
to know the distance between the two cylinders and the frequency of oscillation,
one must also go back in time to find the initial velocity of the forced cylinder.
When the forced cylinder has a non-zero initial velocity, it instantaneously imparts
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Figure 4. The response of B2 to forced oscillations of B1. Here, B2 is initially placed at
x2(0) = 100 m and the solution x2(t) is based on approximate expressions of the added mass.
(a) x2(t) versus t for B1 oscillating at f (t) = sin2(t), and in (b) f (t) = sin3(t). Interestingly,
the free body drifts away from the forced body in a quadratic manner for f (t) = sinn(t) when
n> 1, as discussed further in the multiple-scales analysis in § 4.

an initial non-zero impulse to the fluid† which biases the direction of motion of
the free cylinder. The initial impulse of the fluid is equal and opposite to the initial
momentum of the forced body, that is, the fluid initial impulse is −m1ḟ (0) (starting
from rest, the total impulse of the solid–fluid system at time t = 0 is zero). When
f (t) = sin(t), the initial fluid impulse is −m1 < 0 which biases the motion of the
free body towards the forced body, and vice versa when f (t) = − sin(t). Also, when
f (t) = ± sinn(t), the initial fluid impulse is zero and has no effect on the direction of
motion of the free body, whose intrinsic response is to drift away from the forced
body. This interpretation is consistent with the numerical observations in figures 3
and 4 as well as the results of the multiple-scales analysis of § 4. Indeed, note that,
when f (t) = ± sin t , equations (4.9) and (4.10) describing the slow response can be
rewritten as x2ε = A − (ḟ (0)/A2)τ + · · · (A is the initial separation distance and τ is
the slow time scale), which, to leading order, decreases when ḟ (0) is positive and
increases when ḟ (0) is negative.

4. Multiple-scale analysis of the two-cylinder example
In this section, (3.17) is decomposed into components that are evolving at two

distinct time scales: a rapid time t of O(1) defined by the frequency of the prescribed
oscillations of B1 and a slow time τ = εt of O(ε) defined by the drift rate of B2.

In multiple-scales analysis, the dynamic variable is typically written as a polynomial
expansion in ε

x2ε(t) = x20(t, τ ) + εx21(t, τ ) + ε2x22(t, τ ) + · · · , (4.1)

which can be expressed in the form (see the Appendix for details)

x2ε(t) = A + A0(τ ) + ε(A1(τ ) + B0(t)) + ε2(A2(τ ) + B1(t)) + · · · . (4.2)

† The impulse of the fluid is a momentum-like quantity. The fluid momentum in its strict
definition is infinite since the volume of the fluid is infinite.
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The time derivatives can be expressed as

d

dt
=

∂

∂t
+ ε

∂

∂τ
,

d2

dt2
=

∂2

∂t2
+ 2ε

∂2

∂t∂τ
+ ε2 ∂2

∂τ 2
. (4.3)

Relations (4.3) are substituted into (4.2) and terms of the same order in ε are collected
to give

ẋ2ε(t) = Ȧ+ ε(A′
0 + Ḃ0) + ε2(A′

1 + Ḃ1) + · · · , ẍ2ε(t) = Ä + εB̈0 + ε2(A′′
0 + B̈1) + · · · ,

(4.4)
where the prime denotes the derivative relative to slow time τ , and the over dot
denotes the derivative relative to t .

To write a series expansion of the right-hand side of (3.17) in terms of ε, we need
the following result: given a series y = y0 + εy1 + ε2y2 + · · ·, one has

1

yn
=

1

yn
0

(
1 − εn

y1

y0

+ ε2

(
n(n + 1)

2

y2
1

y2
0

− n
y2

y0

)
+ · · ·

)
. (4.5)

Now, substitute (4.2) into the right-hand side of (3.17) and use the result in (4.5) to
obtain a polynomial expansion in terms of ε. Then, substitute (4.4) into the left-hand
side of (3.17) and collect terms of the same order on both sides. One obtains, when
truncating the expansion (4.1) at O(ε2), that is, for x2ε = x20 + εx21 = A(t) + A0(τ ) +
εB0(t),

O(1): Ä = 0, (4.6a)

O(ε): B̈0 =
f̈

(A + A0)2
, (4.6b)

O(ε2): A′′
0 =

2ḟ 2 + 2f̈ f − 2f̈ B0

(A + A0)3
. (4.6c)

At the leading order, the solution A(t) corresponds to ε = 0 which, starting at rest, is
a constant function equal to the initial position of B2, i.e. A= x2(0) when ẋ2(0) = 0.
The remaining two equations in (4.6a) are used to solve for A0(τ ) and B0(t). Note
that the initial conditions x2(0) = A and ẋ2(0) = 0 translate to initial conditions for
A0(τ ) and B0(t) using x2ε = A + A0(τ ) + εB0(t) and ẋ2ε = εA′

0 + εḂ0 as follows:

x2ε(0) = A =⇒ A0(0) = B0(0) = 0, ẋ2ε(0) = 0 =⇒ A′
0(0) = −Ḃ0(0). (4.7)

We now solve for A0(τ ) and B0(t) in the case when B1 is forced to oscillate as a
sinusoidal function of time f (t) = sinn(t), where n is a positive integer. In this case,
the solution to (4.6b) is of the form

B0(t) =
f (t)

(A + A0)2
+

⎛
⎜⎜⎝ Ḃ0(0) − ḟ (0)

(A + A0(0))2︸ ︷︷ ︸
=0

⎞
⎟⎟⎠ t + B0(0) =

sinn(t)

(A + A0)2
, (4.8)

where B0(0) = 0 from (4.7) and we set the linear term to zero to obtain a periodic
response B0(t) in the fast time scale t . We distinguish two cases based on the
value of n.

Case of n= 1. One has:

Ḃ0(0) − ḟ (0)

(A + A0(0))2
= 0 =⇒ Ḃ0(0) =

1

A2
,
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and, using (4.7), obtains A′
0(0) =−Ḃ0(0) = − 1/A2. Now, the Taylor expansion for

A0(τ ) about τ = 0 is given by

A0(τ ) = A0(0) + A′
0(0)τ + · · · =⇒ A0(τ ) = − 1

A2
τ + · · · ,

and, correspondingly,

x2ε(t) = A − 1

A2
τ + ε

sin(t)

(A + A0)2
+ · · · . (4.9)

The above equation means that, when B1 is forced to oscillate as sin(t), although at
t = 0 B1 moves towards B2, the free body B2 is attracted towards the forced body.
Now, if B1 is forced as − sin(t), i.e. if the phase of the oscillation is changed by π,
then

x2ε(t) = A +
1

A2
τ − ε

sin(t)

(A + A0)2
+ · · · , (4.10)

and B2 is repelled away from the oscillating body. In both scenarios, the linear
slow-time behaviour and the superimposed fast-time-scale oscillations are consistent
with the response obtained by direct numerical integration shown in figure 3.

Case of n> 1. One has ḟ (0) = 0 which yields using (4.7) and (4.8) that A′
0(0) =

−Ḃ0(0) = 0. Therefore, we should consider the quadratic term in τ to understand the
slow-time response A0(τ ) which is governed by (4.6c). Using the value of B0(t) from
(4.8), (4.6c) becomes

A′′
0 =

2ḟ 2 + 2f̈ f

(A + A0)3
− 2f̈ f

(A + A0)5
. (4.11)

We average out the fast oscillations on the right-hand side and consider the average
behaviour of A0, denoted by 〈A0〉. To this end, for f (t) = ± sinn(t), the average of f f̈

over a 2π period is zero, and the average of (4.11) over a period of rapid oscillation
yields

〈A0〉′′ =
2〈ḟ 2〉

(A + 〈A0〉)3 , (4.12)

where 〈ḟ 2〉 is positive. Clearly, 〈A0〉 increases with a leading term that is quadratic
in τ . That is, the free body is repelled away from B1 for f (t) = ± sinn(t). This result
is consistent with the direct numerical integration shown in figure 4.

Remarks on Lamb’s analysis. We conclude this section by returning to Lamb’s example
of two submerged spheres where one is forced to oscillate periodically while the
second responds freely. One can readily verify, following the notation and procedure
employed in § 3, that the response of sphere B2 is dictated by

ẍ2 =
εf̈

2(x2 − εf )3
− 3ε2ḟ

2

2(x2 − εf )4
, (4.13)

where the radius a of the sphere is taken to be 3a3 = 1m3. Lamb (1932) derived a
similar equation and concluded, using an averaging approach, that the free sphere
drifts towards the forced one. His analysis fails to capture the case when the sphere
drifts away because, when he took the average of both sides of (4.13), he treated the
terms given by (x2 − εf ) as constant.
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Figure 5. The response x2(t) of B2 due to x1(t) = f (t) = sin(25t). Clearly, B2 is initially
attracted towards B1, reaches a minimum separation distance then drifts away. When B2

goes back to its initial position, it now has a non-zero velocity in the positive x1-direction and
continues to drift away without turning back. The lowermost line corresponds to the simulation
using the panel method in § 3.1 while the middle and upper lines are based on the approximate
added masses in (3.12) and (3.13), respectively. The solution based on approximate potentials
is expected to be less accurate when the distance between the two bodies decreases. Indeed,
the exact and approximate solutions diverge as time increases but their qualitative behaviour
is consistent.

5. Fluid’s role in collision avoidance and motion coordination
We examine the role of hydrodynamic coupling further through a number of

examples, and show that this coupling could help in collision avoidance and motion
coordination. This result may be relevant to understanding the coordinated motion
in fish schooling.

5.1. Collision avoidance

The fluid seems to act as a collision avoidance mechanism in the two-cylinder example
discussed above. Figure 5 is a depiction of the time response of B2 due to forced
oscillations f (t) = sin(25t) which shows that B2 moves towards the oscillating body,
reaches a minimum separation distance, then starts to drift away. We did several
numerical experiments by integrating (3.17) with forcing of the form f (t) = K sin(ωt)
to try to understand what exactly determines the minimum separation distance. In
the first set of experiments, we varied the frequency ω while letting the amplitude
K = 1 and the initial velocity of the free body ẋ2(0) = 0. We found that the minimum
separation distance does not change significantly as a function of the frequency but
the time it takes to reach the minimum separation distance decreases as ω increases.
We obtained similar results when we fixed ω = 25 and varied the amplitude of the
forcing. In the third set of experiments, we held K = 1 and ω = 25 and varied the
initial velocity of the free body. The minimum separation distance decreased when
we gave the free body an initial velocity towards the oscillating body.

These results can be interpreted as follows. One could associate an impulse with
the slow drift that is proportional to the drift velocity. Now, the drift towards the
oscillating body is a transient behaviour dictated by the initial impulse imparted to the
fluid and by the impulse associated with the slow drift. The body reverses its direction
of motion when the impulse associated with the slow drift balances the initial impulse
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Figure 6. A two-link mechanism is forced to oscillate about its hinge joint placed at the
origin while a circular body B3 is free to respond, through the hydrodynamic coupling, to this
parametric excitation. The response of B3 for chosen parameters is depicted in figure 7.

imparted to the fluid. As we increase the amplitude or frequency of the forcing, not
only the initial impulse imparted to the fluid increases but also the impulse associated
with the slow drift increases correspondingly. As a result, the time it takes to overcome
the initial impulse decreases while the minimum separation distance is not significantly
affected. Now, when we fix the amplitude and frequency of the forcing and assign
a non-zero initial velocity to the free body, we change the initial impulse without
affecting the impulse associated with the slow drift. As a result, both the minimum
separation distance and the time it takes to reach that distance change. In particular,
the minimum separation distance decreases when the free body is given an initial
velocity towards the oscillating body. In order to rigorously prove or disprove these
statements, one could use the method of multiple scales described in § 4 to obtain
estimates of the velocity and impulse associated with the slow drift. One may need
to include higher-order terms in the multiple-scales expansions to better approximate
the slow drift. Such detailed analysis is beyond the scope of the present paper.

A similar behaviour is observed in the example shown in figure 6 where two identical
bodies B1 and B2 are used to form a two-link mechanism with a hinge joint placed at
the origin while a free circular body B3 is initially placed at (x3(0), 0). The two links B1

and B2 are forced to oscillate about their common joint according to β1(t) = β1(0) +
f (t) and β2(t) = − β1(t), where f (t) is periodic in t . That is, the motion of the mass
centres of the two links is given by xi(t) = l cos βi(t) and yi(t) = l sinβi(t), (i = 1, 2),
where l is the constant distance from the joint to the mass centres. The velocities ξ1,2

corresponding to the prescribed motion are given by ξT
1,2 = (±ḟ , ∓lḟ sin f, ±lḟ cos f ),

where the upper sign is associated with ξ1.
The Lagrangian function of the system in figure 6 is given by (2.14) with N =3.

The equations governing the motion of B3 are obtained by substituting (2.14) in
Hamilton’s principle (2.15) subject to variations in the orientation β3 and position
(x3, y3) of B3. However, due to the geometric symmetry of the bodies and the
symmetry in the forcing of B1 and B2, one needs to take variations with respect to
x3 only. This yields a differential equation of the form

d

dt

[
(0, 1, 0)

(
�f

31ξ1 + �f

32ξ2 + �33ξ3

)]
=

∂L

∂x3

, (5.1)

whose solution x3(t) is the motion of B3 in the e1-direction. The added masses
involved in (5.1) are computed as discussed in § 3.1 and their derivatives with respect
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Figure 7. The response x3(t) of B3 to oscillations f (t) = (π/8)(1 − cos t) rad. (a) x3(0) = 50 m
and (b) x3(0) = −50 m. In (a), B3 drifts away from the oscillating two-link mechanism, and
in (b), B3 drifts towards the oscillating two-link mechanism, reaches a minimum separation
distance, then starts to drift away.

�1

e1

e2

�2

�3

�4 �5

Figure 8. The two-link rigid bodies are forced to oscillate about their respective hinge joints
and to translate in the e1-direction while a circular body B3 is free to respond, through
the hydrodynamic-coupling, to this parametric excitation. The coordinated response of B3 to
prescribed motion of the outer two bodies is depicted in figure 9.

to x3 are calculated numerically analogously to (3.14). For the numerical integration,
the radius of B3 is set equal to 3 m, while the major and minor axes of the ellipses
B1 and B2 are chosen to be 10 and 3 m, respectively. Figure 7 shows the response of
B3 to oscillations β1(t) = −β2(t) = π/4 + π/8(1 − cos t) rad. In plot (a), x3(0) = 50 m
and B3 drifts away from the oscillating two-link mechanism. Plot (b) corresponds
to x3(0) = −50 m. Here, B3 drifts towards the two-link body, reaches a minimum
separation distance, then starts to drift away.

One may think of this example as a simple model of an aquatic animal, say a
scallop or a jellyfish, that is trying to feed by opening and closing its mouth. It
seems that the two-link animal fails to attract the food, i.e. B3, by merely undergoing
oscillatory movement in potential flow in the absence of a mechanism for vortex
shedding. Alternatively, one could think of the oscillating two-link body as a simple
model of a flapping fish. The numerical result in figure 7 suggests that the flapping
motion may play a role, through the hydrodynamic coupling, in keeping a minimum
distance of separation between the fish and its neighbour. This idea is explored further
in the example in § 5.2.
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Figure 9. The motion of B3 in the (x, y)-plane in response to prescribed flapping
f (t) = (π/8) sin(t) rad and translation x(t) with onstant velocity of the outer two-link bodies.
Clearly, B3 moves in the e1-direction and its response is coordinated with the motion of its
neighbours.

5.2. Motion coordination

Consider the example shown in figure 8 of two identical articulated bodies, each
made of two rigid links, and a free circular body B3 initially placed at mid-distance
between the two mechanisms. The articulated bodies are initially placed such that
their major axis lies along the e1-direction. Further, they are forced to oscillate
about their respective joints such that their oscillatory motion is out of phase,
more specifically, β1(t) = β5(t) = f (t) while β2(t) = β4(t) = −f (t). The articulated
bodies are also forced into a translational motion x(t) along the e1-direction.
To this end, the motion of the mass centres of the individual links is given
by xi(t) = x(t) + l cos βi(t) and yi(t) = l sinβi(t) (i = 1, 2, 4, 5), where l is defined
as in the previous example. The velocities ξ1(= ξ5) and ξ2(= ξ4) are given by
ξT
1,2 = (±ḟ , x(t) ∓ lḟ sin f, ±lḟ cos f ), where the upper signs are associated with ξ1.
The equations governing the motion of B3 are obtained by substituting the

Lagrangian (2.14) in Hamilton’s principle (2.15) subject to variations in the
orientation β3 and position (x3, y3) of B3. However, due to the geometric symmetry
of B3, one needs to take variations with respect to x3 and y3 only. This yields the
following differential equations:

d

dt

[(
0 1 0

0 0 1

)(
�f

31ξ1 + �f

32ξ2 + �f

34ξ4 + �f

35ξ5 + �33ξ3

)]
=

⎡
⎢⎢⎣

∂L

∂x3

∂L

∂y3

⎤
⎥⎥⎦ . (5.2)

These equations can be integrated numerically following the procedure described
in § 5.1. The major and minor axes of the ellipses are chosen to be 10 m and 5 m,
respectively, while the radius of B3 is equal to 3 m. The initial distance from the
centre of B3 to the joint of the two-link bodies is taken to be 80 m. Figure 9
depicts the response of B3 to the case when the outer two-link bodies are oscillating
with f (t) = (π/8) sin(t) rad and translating in the e1-direction with velocity equal
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to 0.1 m s−1. Clearly, the response of B3 is coordinated with the motion of its
neighbours. The two-link bodies may be thought of as simple models of flapping fish.
The coordinated response of B3 to the motion of the outer two bodies suggests that
the hydrodynamic coupling may play an essential role in the coordinated motion of
fish schools. Further investigations will be undertaken to understand the persistency
and stability of such coordinated motions over a range of geometries and parameters
values.

6. Summary
This paper considered the dynamics of a finite number of rigid solids moving in

potential flow. The dynamics of the solid–fluid system was formulated in terms of
the solid variables only using Kirchhoff potentials. The problem of two submerged
bodies where one is forced into periodic oscillations was analysed. It was observed
that the hydrodynamic coupling causes the free body to drift away from or towards
the oscillating body. The method of multiple scales was used to separate the slow
drift from the fast response. Interestingly, the free body, when attracted towards the
forced one, starts to drift away after it reaches certain separation distance, which
suggests that the hydrodynamic coupling may help in preventing collision. The fluid’s
role in collision avoidance and motion coordination was examined further through a
number of examples. In particular, it was shown that a free body can coordinate its
motion with that of its neighbour’s through the hydrodynamic coupling. This result
may be relevant to understanding the coordinated motion in fish schooling.
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and Andrew J. Szeri for useful comments and discussions. E. K.’s work is partially
supported by the National Science Foundation through the award CMMI 06-44925.

Appendix. An alternative form of the multiple-scales expansion
Claim. In perturbation theory, the dynamic response x due to an external excitation

of order ε is typically written as a polynomial expansion in ε, see e.g. Nayfeh (1973).
In the case of multiple time scales, say when x evolves at two distinct time scales – a
fast time t and a slow time τ = εt – the expansion is written as follows:

xε(t) = x0(t, τ ) + εx1(t, τ ) + ε2x2(t, τ ) + · · · =

∞∑
r=0

εrxr (t, τ ). (A 1)

We claim that this series can be equivalently written in the form

xε(t) = A(t) +

∞∑
i=0

εi(Ai(τ ) + εBi(t)) (A 2)

where A(t) is the solution corresponding to ε = 0, and Ai(0) = 0 for all i.

Remark. One of the main advantages of using (A 2) over (A 1) in § 4 is the absense
of cross-coupling terms that depend on both t and τ . In particular, one obtains
∂2/∂t∂τ =0.

Proof. A term xr (t, τ ) in (A 1) is expanded as a Taylor series in t and τ as follows:

xr (t, τ ) = xr0 +

∞∑
i=1

i∑
n=0

xr,i,n tn τ i−n = xr0 +

∞∑
i=1

xr,i,0 τ i +

∞∑
i=1

i∑
n=1

xr,i,n tn τ i−n (A 3)
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where we have seperated the term corresponding to n=0. Use tn τ i−n =
tn (εt)i−n = t iεi−n in (A 3) to obtain

xr (t, τ ) = xr0 +

∞∑
i=1

xr,i,0 τ i +

∞∑
i=1

t i

i∑
n=1

xr,i,n εi−n = xr0 +

∞∑
i=1

xr,i,0 τ i +

∞∑
i=1

t i

i−1∑
n=0

xr,i,n εn.

(A 4)
Now, interchange the order of summation in the last term of (A 4),

xr (t, τ ) = xr0 +

∞∑
i=1

xr,i,0τ
i +

∞∑
i=0

εi

∞∑
n=i+1

xr,i,n tn, (A 5)

and define the functions Ar (τ ), B̃r0(t) and B̃ri(t) (for i > 0) as follows:

Ar (εt) =

∞∑
i=1

xr,i,0 τ i, B̃r0(t) = xr0 +

∞∑
n=1

xr,i,n tn, B̃ri(t) =

∞∑
n=i+1

xr,i,n tn. (A 6)

Note that, by definition, Ar (0) = 0 for all r and εiB̃ri(t) is independent of τ and
powers of τ . Substitute (A 6) in (A 5), then use the resulting form for xr (t, τ ) in (A 1)
to obtain

xε(t) =

∞∑
r=0

εr xr (t, τ ) =

∞∑
r=0

εrAr (τ ) +

∞∑
r=0

∞∑
i=0

εr+i B̃ri(t) . (A 7)

Collect powers of εr in the second term of (A 7) to obtain

xε(t) = B̃00(t) +

∞∑
r=0

εrAr (τ ) +

∞∑
r=1

εr
∑

i+j=r

B̃ij (t). (A 8)

Now, define

A(t) = B̃00(t), B̃r =
∑

i+j=r

B̃ij (t) . (A 9)

Replacing (A 9) in (A 8) yields xε(t) = A(t) +
∑∞

r = 0 εrAr (τ ) +
∑∞

r =1 εrB̃r (t). Finally,

introduce Br = B̃r+1 to obtain

xε(t) = A(t) +

∞∑
r=0

εr (Ar (τ ) + εBr (t)). (A 10)

Note that for ε =0, one has x0(t) = A(t) since Ar (0) = 0 for all r by construction.
That is, A(t) is the solution for ε = 0. Therefore, (A 1) is equivalent to (A 2) and our
claim is proved.
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